
Lattice QCD on modern
CPU architectures

March 10, 2016 Patrick Steinbrecher

Outline

The last decade of x86

Dslash kernel

The performance gap:

plain C vs. optimized code

March 10, 2016 Patrick Steinbrecher Slide 1

✉ ✉ Q

✉ Q

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟

✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟

✟✟

✟
✟
✟

✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟✟

✉

March 10, 2016 Patrick Steinbrecher Slide 2

SIMD: Single Instruction, Multiple Data

y0 y1 y2 y3

+
x0 x1 x2 x3

=

x0+y0 x1+y1 x2+y2 x3+y3

SISD processor

4 instructions

SIMD processor

1 instruction

March 10, 2016 Patrick Steinbrecher Slide 3

CPU hierarchy

Larger

Faster

Registers

Cache

Memory

Disk

March 10, 2016 Patrick Steinbrecher Slide 4

CPU hierarchy

Larger

Faster

Registers

Cache

HBW Memory

Memory

Disk

March 10, 2016 Patrick Steinbrecher Slide 4

Many- and Multi-core

#cores ≥ 52

low frequency

weak/no Out-of-Order

better energy efficiency

high Flop/s

#cores ≤ 18

high frequency

deep Out-of-Order

large shared cache

March 10, 2016 Patrick Steinbrecher Slide 5

Vectorization techniques

Assembly
Intrinsics

Compiler

Vectorization

Ease of Programming

P
e

rf
o

rm
a

n
c

e

March 10, 2016 Patrick Steinbrecher Slide 6

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

complex 3×3 matrix

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

complex 3×3 matrix U(3) matrix
→֒ reconstruct from 14 floats

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

complex 3×3 matrix U(3) matrix
→֒ reconstruct from 14 floats

ν

µ
matrix

vector

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

complex 3×3 matrix U(3) matrix
→֒ reconstruct from 14 floats

ν

µ
matrix

vector

w = standard

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

complex 3×3 matrix U(3) matrix
→֒ reconstruct from 14 floats

ν

µ
matrix

vector

w = standard

+ naik

� precalculated

� three-link term

HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]

March 10, 2016 Patrick Steinbrecher Slide 7

complex 3-dim vector

complex 3×3 matrix U(3) matrix
→֒ reconstruct from 14 floats

ν

µ
matrix

vector

w = standard

+ naik

� precalculated

� three-link term

1146 Flop/site

0.8 Flop/byte
→֒ single-precision

Multiple right-hand sides

Memory

Memory

March 10, 2016 Patrick Steinbrecher Slide 8

Multiple right-hand sides

Memory

Memory

const. gauge fields

March 10, 2016 Patrick Steinbrecher Slide 8

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

March 10, 2016 Patrick Steinbrecher Slide 8

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

March 10, 2016 Patrick Steinbrecher Slide 8

DS()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

March 10, 2016 Patrick Steinbrecher Slide 8

DS()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

,

March 10, 2016 Patrick Steinbrecher Slide 8

DS()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

,

March 10, 2016 Patrick Steinbrecher Slide 8

DS()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

,

March 10, 2016 Patrick Steinbrecher Slide 8

DS() DS multi3()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

,

·
, , ,

March 10, 2016 Patrick Steinbrecher Slide 8

DS() DS multi3()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

,

·
, , ,

March 10, 2016 Patrick Steinbrecher Slide 8

DS() DS multi3()

Multiple right-hand sides

Memory

Memory

const. gauge fields η0 η1 η2 η3 η4 η5 η6 · · ·

random noise vectors

,

·
, , ,

March 10, 2016 Patrick Steinbrecher Slide 8

DS() DS multi3()

pro: much better arithmetic intensity

con: higher register pressure

Multiple right-hand sides (rhs)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5 6 7 8

Flop/byte

#rhs

HISQ Dslash

March 10, 2016 Patrick Steinbrecher Slide 9

Performance on Haswell

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

GFlop/s

Flop/byte

Cori P1, fp32, ECC

memory bandwidth ∗×(Flop/byte)

peak performance

March 10, 2016 Patrick Steinbrecher Slide 10

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Staggered,
Wilson

Domain Wall

Dslash on Haswell

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60

Dslash 32
3
×8

GFlop/s

#rhs

fp32, ECC

Cori P1

March 10, 2016 Patrick Steinbrecher Slide 11

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

323×8 −→ 2×322×8
constraints on lattice size

...

Vectorizing QCD
Matrix-vector multiplication

March 10, 2016 Patrick Steinbrecher Slide 13

︸

︷︷

︸

register

Vectorizing QCD
Matrix-vector multiplication

March 10, 2016 Patrick Steinbrecher Slide 13

︸

︷︷

︸

sites

︸
︷
︷

︸

row

︸ ︷︷ ︸

column

real imag

matrix

Vectorizing QCD
Matrix-vector multiplication

March 10, 2016 Patrick Steinbrecher Slide 13

︸

︷︷

︸

sites

︸
︷
︷

︸

row

︸ ︷︷ ︸

column

real imag

matrix

vector

Vectorizing QCD
Matrix-vector multiplication

March 10, 2016 Patrick Steinbrecher Slide 13

()
,
,
,

,
,
, ×

16 matrices times 16 vectors

︸

︷︷

︸

sites

very natural implementation −→ use SIMD registers like scalars

()

real imag

matrix

vector

Naive site fusion

even odd cache line

merge

March 10, 2016 Patrick Steinbrecher Slide 14

Efficient site fusion

even oddi cache linei

boundary

1 3 5

1st entry

1 3 5

2nd entry

1

0 2 4 0

2nd entry

2 4

1st entry

0

permute

0 0

center

March 10, 2016 Patrick Steinbrecher Slide 15

Performance gains on Haswell

March 10, 2016 Patrick Steinbrecher Slide 16

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323
×8, 16 right-hand sides

optimizations speedup

1 core, scalar 1x

Performance gains on Haswell

March 10, 2016 Patrick Steinbrecher Slide 16

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323
×8, 16 right-hand sides

optimizations speedup

1 core, scalar

32 cores, scalar

1x

27x

Performance gains on Haswell

March 10, 2016 Patrick Steinbrecher Slide 16

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323
×8, 16 right-hand sides

optimizations speedup

1 core, scalar

32 cores, scalar

1 core, vectorized

1x

27x

25x

Performance gains on Haswell

March 10, 2016 Patrick Steinbrecher Slide 16

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323
×8, 16 right-hand sides

optimizations speedup

1 core, scalar

32 cores, scalar

1 core, vectorized

1x

27x

25x

Performance gains on Haswell

March 10, 2016 Patrick Steinbrecher Slide 16

(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323
×8, 16 right-hand sides

optimizations speedup

1 core, scalar

32 cores, scalar

1 core, vectorized

32 cores, vectorized

1x

27x

25x

560x

Thank you for your attention!

March 10, 2016 Patrick Steinbrecher Slide 17

Intrinsics
v o i d add (d o u b l e ∗a , d o u b l e ∗b ,

d o u b l e ∗c) {

m512d a , b , c ;

a = mm512 load pd (a) ;
b = mm512 load pd (b) ;

c = mm512 add pd (a , b) ;

m m 5 1 2 s t o r e p d (c , c) ;
}

C
vo id add (double ∗a , double ∗b ,

double ∗c) {

f o r (i n t i = 0 ; i < 8; ++ i) {

c [i] = a [i] + b [i] ;
}

}

Assembly
v o i d add (d o u b l e ∗a , d o u b l e ∗b ,

d o u b l e ∗c) {
asm {

mov r d i , a
mov r s i , b
mov rdx , c

vmovapd zmm1 , [r d i]
vmovapd zmm2 , [r s i]
vaddpd zmm3 , zmm2 , zmm1
vmovapd [r d x] , zmm3

}
}

